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bstract

Models of relationships between structure and flash point of 92 alkanes were constructed by means of artificial neural network (ANN) using
roup bond contribution method. Group bonds were used as molecular structure descriptors which contained information of both group property
nd group connectivity in molecules, and the back-propagation (BP) neural network was employed for fitting the possible nonlinear relationship
xisted between the structure and property. The dataset of 92 alkanes was randomly divided into a training set (62), a validation set (15) and a
esting set (15). The optimal condition of the neural network was obtained by adjusting various parameters by trial-and-error. Simulated with the

nal optimum BP neural network [9-5-1], the results showed that the predicted flash points were in good agreement with the experimental data,
ith the average absolute deviation being 4.8 K, and the root mean square error (RMS) being 6.86, which were shown to be more accurate than

hose of the multilinear regression method. The model proposed can be used not only to reveal the quantitative relation between flash points and
olecular structures of alkanes, but also to predict the flash points of alkanes for chemical engineering.
2007 Elsevier B.V. All rights reserved.
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. Introduction

The flash point of a flammable (or combustible) compound is
he temperature at which the vapor pressure of the substance is
uch as to produce a concentration of vapor in the air that corre-
ponds to the lower flammable limit [1]. This parameter provides
he knowledge necessary for understanding the fundamental
hysical and chemical processes of combustion. Moreover, it
s of importance in practice for safety considerations in storage,
rocessing, and handling of a given compound, and is one of
he major flammability characteristics used to assess the fire and
xplosion hazards of chemical compounds.

Reliable values of flash points are always desirable, and some
f them can be measured by two currently-accepted experimen-

al methods, which are the closed cup test and the open cup
est [2]. However, for many other compounds, the experimental
ash point values are scarce or too expensive to obtain. What is
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ore, for toxic, volatile, explosive, and radioactive compounds,
he experimental determination of flash point values is more dif-
cult. Hence the development of estimation methods which are
esirably convenient for predicting the flash points in short is
equired.

Quantitative structure–property relationships (QSPR)
ethod which relates descriptors of the molecular structure to

he properties of chemical compounds, has been reported quite
xtensively in the literature for the prediction of flash point
3–10]. For example, the first method for estimating the flash
oint of organic compounds from their molecular structure
as developed by Suzuki et al. The 25 atomic and group

ontributions were employed for predicting the flash points of
3 aliphatic and 26 aromatic hydrocarbons with an average
bsolute deviation of 12.2 and 6.1 ◦C, respectively. The average
eviation for the 59 hydrocarbon compounds tested was 9.5 ◦C.
n another work, Tetteh et al. used a radial basis function

eural network for the estimation of flash points for a large
et of 400 compounds from different classes. The structures
ere described simply with a molecular connectivity index and

ounts of the 25 functional groups present in the molecules.

mailto:yongpannjut@163.com
dx.doi.org/10.1016/j.jhazmat.2007.01.025
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Table 1
Group bonds presented in the alkane molecules

No. Group bond No. Group bond No. Group bond

1 CH3–CH2– 4 –CH2–CH2– 7 CH–CH

2 CH3–CH 5 –CH2–CH 8
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he average absolute error for the test set in flash point
rediction was 11.9 ◦C using a RBFNN with a 26-36-2 con-
guration. Katritzky et al. studied quantitative structure–flash
oint relationships for a diverse set of 271 compounds. The
eneral three-parameter QSPR model provided R2 = 0.9020
nd s = 16.1 K. When the boiling point was used as a descriptor
n the model, the correlation was improved to R2 = 0.9529.

eanwhile, the study on mixture flash points [9,10] which can
isplay non-ideal behavior with important safety consequences
as also been developed. Liaw et al. proposed a mathematical
odel, which could be used for predicting the flash point of

queous-organic solutions, and the results revealed that this
odel was able to precisely predict the flash point over the

ntire composition range of binary aqueous-organic solutions
y way of utilizing the flash point data pertaining to the
ammable component.

The group bond contribution method was recently proposed
y Wang [11] for the description of molecules structure. This
ethod combined together information of both group prop-

rty and connectivity in the analyzed molecules, and has been
uccessfully used in the estimation of physical and chemical
roperties, such as density [11] and boiling point [12].

In recent years, the modeling technique of artificial neural
etwork (ANN) has been widely used in the field of QSPR
4,8,13,14]. ANN is a powerful tool for correlating and esti-
ating chemical properties and one of a group of intelligence

echnologies for data analysis that differ from other classical
nalysis techniques. The advantage of ANN is in its inherent
bility to incorporate nonlinearity and cross-product terms into
he model. Besides, it is also able to acquire an estimate func-
ion from studied samples while the form of the mathematical
unction is unknown.

In this paper, we developed a method to estimate the flash
oints of 92 alkanes based on the back-propagation (BP)-ANN
sing group bond contribution method. Group bonds which
btained from chemical structure are used as molecular struc-
ure descriptors, and these descriptors are quantitatively related
o flash points of 92 alkanes by BP neural network.

. Group bond contribution method

One of the most widely used methods proposed for predic-
ion of properties from molecular structure is group contribution

ethod. It is based on the assumption that the contribution of
certain group is completely the same in different molecules,

nd the properties of compounds are considered as the con-
ribution addition of groups which constituted the compounds.
he group contribution method works well for a large number
f compounds, however, difficulties may arise in decomposing
ome structures into appropriate groups whose constants are
vailable. Several correction factors are also needed for some
olecular interactions, for group contribution method takes into

ccount only the contribution of groups in the molecule but the

nteraction between groups and chemical bonds. Besides, group
ontribution method has a weak ability for distinguishing the
someric compounds. For instance, the structure difference of
-methylhexane, 3-methyhexane and 3-ethylpentane cannot be

3

m

3 6 9

istinguished from only molecular groups, because there are 3
–CH3”group, 3 “–CH2–” group and 1 “ CH–” group in each of
he three compounds above, while the flash point values of them
ere 269, 258 and 255 K, respectively [15]. Because of such

ausations, group contribution method has some limitations in
SPR studies for property calculation.
However, the group bond contribution method can cover these

hortages above. Group bond which is defined as an integration
f two molecular groups and the chemical bond between them,
ontains information of both group and chemical bond. Strict
uantitative relationships among the number of group bond,
umber of group and number of chemical bond are existed,
nd the number of group and chemical bond can be confirmed
rom the number of group bond in molecule, but the species and
umber of group bond cannot be ascertained from group and
hemical bond. Thus the group bond contribution method con-
ains both group contribution and bond contribution, and could
ave better and more comprehensive prediction abilities than
he group contribution method to a certain extent. Besides, the
roup bond contribution method takes into account both group
roperty and connectivity in the analyzed molecules, so it may
ave a great ability for the identification of isomeric compounds.

In this work, the flash point values of alkanes were regarded
s the concerted contribution of numerous group bonds consti-
uting the alkane molecules. There were four species of groups
–CH3, CH–, –CH2–, C ) existed in the molecular structure
f alkanes, which constituted a set of nine species of group bonds
resented in all the alkane molecules except ethane. All the nine
roup bonds were listed in Table 1.

Furthermore, because of the possibility that highly nonlinear
nteraction may exist among the group bonds in the chemical

olecules, the contribution value of each group bond obtained
y mathematical regression method could not satisfactorily
how the difference of contributions to property for one cer-
ain group bond in different molecules. However, ANN could
escribe such nonlinear interaction between the group bonds
atisfactorily for its inherent ability of nonlinear fitting. So in
his work we combined together both group bond contribution

ethod and ANN for the flash point prediction of alkanes.

. Experiment
.1. Data sets

The applicability and accuracy of a flash point estimation
odel are directly affected by the size and quality of the training
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et. For the fact that flash points are experimentally determined
ata, the experimental flash point values reported by different
uthors as well as organizations, can differ by as much as 30 K.
or example, Ref. [16] supplies experimental values 355 K for
-decanol, while International Chemical Safety Cards (ICSCs)
17] gives 381 K. Most organizations assess the reliability of the
eported experimental and predicted values and also verify if
uch values are obtained in the most similar conditions using
s much as possible the same methods. Thus, in order to have
omogeneous training and test sets, all the flash points of alka-
es used in this work were taken from the chemical database of
he department of chemistry at the University of Akron (USA)
15], except 2,7-dimethyloctane. The flash point value of 2,7-
imethyloctane acquired from the chemical database referred
bove differs much from most of other sources, which demon-
trates that the value of 354 K is more than probably erroneous.
hus here we adopted the mostly used value of 314 K in Ref.

16] instead of 354 K in Ref. [15] for 2, 7-dimethyloctane. From
he set of 92 alkanes with the number of carbon atoms from 3
o 16, 62 alkanes were randomly chosen for the training set, 15
lkanes used for validation set, and the rest 15 for testing. Flash
oint values of these compounds were in the range from −104
o 135 ◦C.

.2. Back-propagation neural networks

A three-layer feed-forward neural network utilizing the back-
ropagation algorithm was used to model the flash points. The
ypical back-propagation network consists of an input layer,
n output layer and at least one hidden layer. Each layer con-
ains neurons and each neuron is a simple micro-processing
nit which receives and combines signals from many neurons.
he number of neurons presented in the input and output layer
epends on the number of variables (in this work molecular
roup bonds and flash point, respectively). Besides, the number
f neurons used for the hidden layer is optimized by trial-and-
rror training assays.

Each neuron has weighted inputs, summation function, trans-
er function and output. The behavior of a back-propagation
etwork is mainly determined by the transfer functions of
ts neurons. At first, summation function is computed from
he weighted sum of all input neurons entering each hidden
euron and the weighted sum of the inputs constitutes the
ctivation of the neuron. Then the activation signal is passed
n to the transfer function for further processing. The role
f the transfer function is to translate the summed informa-
ion into outputs. In this work, a logistic f(x) = 1/[1 + exp(−x)]
ransfer function was applied both for hidden and output
eurons.

For a given input and a desired output, the back-propagation
eural network system can be trained by the following steps:
1) The input vector is presented to the input layer of the net-
work, and then propagates through the hidden layer to the
output layer, where all of the summed inputs and output
states for each processing element in the network are set

c
i

aterials 147 (2007) 424–430

and an output value is produced.

nethj =
∑

i

ωijOi (1)

Oh
j = f (nethj ) = 1

1 + exp(−nethj )
(2)

netok =
∑

j

ωjkO
h
j (3)

Oo
k = f (netok) = 1

1 + exp(−netok)
(4)

where f is the sigmoid transfer function, and wij/wjk are the
connection weights between hidden units and input/output
units.

2) The actual output value Oo
k is compared with the desired

output value Tk, and the error Ep and the global error E are
determined, respectively.

Ep = 1

2

∑
k

(Tpk − Oo
pk)2 (5)

E = 1

2p

∑
p

∑
k

(Tpk − Oo
pk)2 (6)

3) The weights are modified to reduce the error associated with
the overall error function. In this work, gradient descent
method is carried out for the reduction of E. The gradient
descent method is an iterative least squares procedure which
tries to adjust the connection weight for reducing the error
most rapidly, by moving the state of the system downward
towards the direction of maximum gradient.

ωjk(n + 1) = ωjk(n) + ηδpkOpk (7)

ωij(n + 1) = ωij(n) + ηδpjOpj (8)

δpk = ∂Ep

∂netok
= Oo

pk(1 − Oo
pk)(Tpk − Oo

pk) (9)

δpj = ∂Ep

∂nethj
= Oh

pj(1 − Oh
pj)

∑
δpkωjk (10)

4) For each hidden layer, the training process starts at the layer
below the output layer, and ends with the layer above the
input layer. And for each processing element in the hidden
layer, the global error E is calculated and propagated back
through the networks. Furthermore, the delta weights are
calculated again.

5) Finally, in order to reduce the error, all of the weights in
the networks are updated by adding the delta weights to the
corresponding previous weights. And the training process
of the ANN will be completed when the global error E is
minimized.
Before the beginning of the training process, the optimal
ondition of the neural network was obtained by adjusting var-
ous parameters by trial-and-error. These parameters include:
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ig. 1. RMS as a function of the number of neurons in the hidden layer for the
esting set.

he learning rate, the momentum constants, the number of neu-
ons in the hidden layer, and the training endpoint. The learning
ate determines the speed at which the weights change, and the
omentum constant prevents sudden changes in attaining the

esults. In this work, we empirically set the learning rate and
omentum at 0.1 and 0.9, respectively.
The optimal number of neurons in the hidden layer was deter-

ined by varying the number of hidden neurons and observing
he root mean square error (RMS) [8], which was used as a

easure of the prediction error of the trained model and was
alculated with the following equation:

MS =
√∑n

i=1(pi − ai)2

n
(11)

here n is the number of compounds in the dataset, and pi

s the predicted output, ai is the actual output, respectively.
alculations of RMS were performed with leave-one-out cross-
alidation and the average RMS of 10 runs was adopted.
eave-one-out cross-validation referred to removing one sample

n the dataset using for the test set while the rest using as training
et. Such process was repeated until all samples of the dataset
ere used as the test sample. Finally, the number of neurons that
ave the lowest RMS was chosen. As can be seen from the plot
f RMS versus hidden neurons (Fig. 1), the optimal number of
eurons in the hidden layer was 5.

The early stopping technique was used extensively in the
urrent study for avoidance of overfitting [18]. For the determi-
ation of optimal training endpoint, a validation set contained
5 compounds was used to monitor the training process as mea-
ured by RMS. Thus, the training endpoint giving the lowest
MS for the predictions of the validation set was used.

. Results and discussion
All input descriptors and output values of all 92 samples were
re-treated to scale the value to between ±1 and yet retain the
riginal proportionality before submission to the network for

t
T
o

ig. 2. Correlation between the predicted and experimental flash points for the
raining, validation and the testing sets.

raining or prediction. The programs required to generate the
ack-propagation networks were written in MATLAB M-file
nd the programs were executed on a Pentium PC with 512M
AM and CPU speed of 2.4 G. With the optimum network archi-

ecture represented by [9-5-1], the predictions were repeated 10
imes with different random starting weights between neurons,
hich were given random values between −0.5 and 0.5, and

he averaged flash point values were calculated. The predicted
esults of training set, validation set and testing set were shown
n Table 2. The average absolute deviation of training, validation
nd testing sets were 3.8, 2.6 and 4.8 K, respectively. The RMS
ere 4.95, 3.35 and 6.86, and the correlation R were 0.9912,
.9922 and 0.9902, respectively.

Also, the experimental and predicted flash points of the
raining, validation and testing sets were plotted in Fig. 2.
egression lines were used for comparing the values obtained
y this model with experimental values. As can be seen from
he figures, the calculated slope and intercept did not differ
reatly from the “ideal” values of 1 and 0, respectively, and
he predicted values of flash points agreed with the experimen-
al values satisfactorily for all the training, validation and testing
ets.

A multiple linear regression (MLR) method was also
mployed to describe the relation between flash points (FP) and
olecular descriptors. By using these 9 descriptors selected and

he same 77 training and validation samples used above, the best
LR model can be obtained as follows (x1–x9 referred to the

roup bond 1–9 in Table 1):

P = 175.234 + 9.180x1 + 11.232x2 + 9.796x3 + 17.194x4

+ 18.802x5 + 20.685x6 + 20.660x7 + 24.413x8

+ 29.851x9, R = 0.986, s = 6.27, n = 77 (12)
With this MLR model, the flash points of 15 alkanes in
he testing set were calculated, and the results were listed in
able 3. As can be seen from the table, the prediction results
btained by ANN method and MLR method using group bonds
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Table 2
Experimental and predicted flash point for 92 alkanes

No. Compound Experimental
FP (K)

Predicted
FP (K)

Deviation
(K)

No. Compound Experimental
FP (K)

Predicted
FP (K)

Deviation
(K)

1 Propane 169 186.2 17.2 47 3-Ethyl-2,2-dimethylhexane 311 301.8 −9.18
2 Butane 213 206.5 −6.5 48 3,3,4,4-Tetramethylhexane 304 304.3 0.3
3 Pentane 224 226.5 2.5 49 2,2,5,5-Tetramethylhexane 304 293.3 −10.7
4 2,2-Dimethylpropane 208 208.3 0.3 50 2,3,3,4-Tetramethylhexane 304 303.6 −0.4
5 Hexane 250 248.4 −1.6 51 2,3,4,5-Tetramethylhexane 304 302.8 −1.2
6 2,2-Dimethylbutane 225 232.2 7.2 52 2,2,4,4-Tetramethylhexane 304 297.9 −6.1
7 2,3-Dimethylbutane 244 238.3 −5.7 53 3,3,5-Trimethylheptane 304 304.7 0.7
8 Heptane 269 264.9 −4.1 54 2,3,5-Trimethylheptane 304 306.8 2.8
9 3,3-Dimethylpentane 254 255.0 1.0 55 3-Ethyl-3-methylheptane 314 310.9 −3.1

10 2,4-Dimethylpentane 261 257.7 −3.3 56 4-Ethyl-3-methylheptane 314 308.0 −6.0
11 3-Ethylpentane 255 258.1 3.1 57 2-Methylnonane 314 314.9 0.9
12 2,2-Dimethylpentane 250 251.7 1.7 58 Undecane 333 334.6 1.6
13 2,2,4-Trimethylpentane 261 267.2 6.2 59 Dodecane 344 350.5 6.5
14 2,2,3-Trimethylpentane 270 270.8 0.8 60 Tetradecane 372 380.1 8.1
15 3-Methyl-3-ethylpentane 276 275.5 −0.5 61 Hexadecane 408 407.0 −1.0
16 3-Ethylhexane 278 276.5 −1.5 62 2,2,4,4,6,8,8-Heptamethylnonane 368 377.9 9.9
17 3-Methylheptane 279 278.1 −0.9 63 2-Methylbutane 216 222.6 6.6
18 3,3-Dimethylhexane 272 273.8 1.8 64 2-Methylpentane 250 242.2 −7.8
19 2,3-Dimethylhexane 283 275.4 −7.6 65 2,3,3-Trimethylpentane 273 274.6 1.6
20 2,4-Dimethylhexane 283 274.5 −8.5 66 2-Methylheptane 277 279.7 2.7
21 2,5-Dimethylhexane 271 276.2 5.2 67 2,2-Dimethylhexane 269 270.7 1.7
22 Nonane 304 301.0 −3.0 68 3-Ethyl-2,2-dimethylpentane 286 285.3 −0.7
23 3,4-Dimethylheptane 288 292.1 4.1 69 2,4,4-Trimethylhexane 288 288.7 0.7
24 2,3-Dimethylheptane 288 293.9 5.9 70 4,4-Dimethylheptane 288 292.1 4.1
25 2,6-Dimethylheptane 299 294.2 −4.8 71 2,3,3-Trimethylhexane 288 291.5 3.5
26 2,3-Dimethyl-3-ethylpentane 288 291.3 3.3 72 2,4,6-Trimethylheptane 304 306.5 2.5
27 2,2,5-Trimethylhexane 286 285.7 −0.3 73 3-Ethyl-2,3,4-trimethylpentane 304 303.0 −1.0
28 3-Methyloctane 297 295.9 −1.1 74 2,3,4,4-Tetramethylhexane 304 306.5 2.5
29 2,2,3,4-Tetramethylpentane 284 287.7 3.7 75 3,4,5-Trimethylheptane 304 304.8 0.8
30 2,2,4,4-Tetramethylpentane 276 274.9 −1.1 76 3-Ethyl-5-methylheptane 304 306.2 2.2
31 4-Ethylheptane 288 294.2 6.2 77 5-Methylnonane 312 313.2 1.2
32 2,2-Dimethylheptane 297 289.2 −7.8 78 2-Methylpropane 186 204.3 18.3
33 2,4-Dimethylheptane 288 292.5 4.5 79 3-Methylpentane 241 240.6 −0.4
34 2,3,4-Trimethylhexane 288 288.7 0.7 80 2,3-Dimethylpentane 258 256.3 −1.7
35 3,3,4-Trimethylhexane 288 289.9 1.9 81 3-Methylhexane 258 259.6 1.6
36 2,3,5-Trimethylhexane 288 290.6 2.6 82 2,2,3-Trimethylbutane 247 255.7 8.7
37 2,2,3-Trimethylhexane 288 287.8 −0.2 83 Octane 286 283.2 −2.8
38 3,5-Dimethylheptane 288 290.7 2.7 84 2,2,3,3-Tetramethylbutane 273 269.2 −13.8
39 Tetraethylmethane 294 293.2 −0.8 85 2,3,4-Trimethylpentane 273 271.8 −1.2
40 Decane 319 318.2 −0.8 86 3,4-Dimethylhexane 277 273.6 −3.4
41 4-Ethyloctane 314 311.4 −2.6 87 3-Ethyl-4-methylhexane 288 290.3 2.3
42 2,4,5-Trimethylheptane 304 306.8 2.8 88 2,2,4-Trimethylhexane 288 283.3 −4.7
43 2,3-Dimethyloctane 314 311.8 −2.2 89 2,7-Dimethyloctane 314 311.6 −2.4
44 3,3-Dimethyloctane 314 309.8 −4.2 90 2,2,3,4-Tetramethylhexane 304 302.9 −1.1
45 3,5-Dimethyloctane 314 308.0 −6.0 91 Tridecane 352 365.6 13.6
4 92
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6 2,6-Dimethyloctane 314 309.8 −4.2

he substances from 1 to 62 composed the training sample, those from 63 to 77

s structure descriptors, were both in good agreement with the
xperimental values with a average absolute deviation of 4.8
nd 6.1 K, respectively, which indicated a success in flash point
rediction by using group bond contribution method. Moreover,
he predicted results obtained by ANN method were better than
hose obtained by MLR, which indicated a superior prediction
bility of the ANN model and strongly suggested a nonlinear

elationship existing between the group bonds and flash points of
lkanes.

The results obtained by ANN and MLR were also compared
ith the study of Albahri [6] as well as that of Vazhev et al.

R
t
f
Q

Pentadecane 388 393.9 5.9

the validation sample, and those from 78 to 92 were the testing sample.

7]. Albahri used structural group contribution method (SGCM)
or the prediction of flash points of hydrocarbons including
lkanes, and Vazhev et al. applied transformed infrared spec-
ra as descriptors of molecular structure to predict flash points
f 85 alkanes. As can be seen from Table 3, for the same
5 test samples, the average absolute deviation of SGCM and
nfrared spectra method (IRSM) were 5.6 and 3.6 K, and the

MS were 7.90 and 4.15, respectively. Clearly, compared with

he three other methods, the SGCM can provide the most satis-
actory prediction ability here, followed by the BP-ANN based
SPR model. However, as showed in Table 3, the flash point
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Table 3
Comparison of predicted and experimental flash points for the 15 alkanes in the test set

No. Compound Experimental flash point (K) Predicted flash point (K)

ANN MLR SGCM [6] IRSM [7]

1 2-Methylpropane 186 204.3 208.9 192.1 166.1
2 3-Methylpentane 241 240.6 242.4 240.0 240.8
3 2,3-Dimethylpentane 258 256.3 257.6 256.7 265.0
4 3-Methylhexane 258 259.6 259.6 260.6 264.5
5 2,2,3-Trimethylbutane 247 255.7 251.5 249.3 249.5
6 Octane 286 283.2 279.6 282.5 282.4
7 2,2,3,3-Tetramethylbutane 273 269.2 263.9 265.8 273.3
8 2,3,4-Trimethylpentane 273 271.8 272.7 270.7 274.2
9 3,4-Dimethylhexane 277 273.6 274.3 274.4 286.4
10 3-Ethyl-4-methylhexane 288 290.3 291.1 292.3 273.0
11 2,2,4-Trimethylhexane 288 283.3 283.3 285.3 287.2
12 2,7-Dimethyloctane 314 311.6 309.3 – 304.3
13 2,2,3,4-Tetramethylhexane 304 302.9 300.1 300.0 302.4
14 Tridecane 352 365.6 365.5 360.2 354.6
15 Pentadecane 388 393.9 399.9 386.0 384.8

The average absolute deviation (K) 4.8 6.1 3.6 5.6
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alue of “2,7-dimethyloctane” cannot be obtained using SGCM
roposed by Albahri. In fact, for many other alkanes like “2,7-
imethyloctane”, the flash point values cannot be calculated by
he aforementioned SGCM, too. The reason is that the group
ontribution value of each group is based on its location in the
olecule, and the groups in the different positions along the HC

hain have the different group contribution values. However, in
he original literature, the author has only given the group con-
ribution values of group “ CH–” in the second, third, fourth,
nd fifth positions along the HC chain, as well as the values
f group “ C ” in the second, and third positions, which are
ot sufficient for the flash point calculation of alkanes with long
C chains, such as “2,7-dimethyloctane” with a “ CH–” group

n the seventh position, and “2,2,4,4,6,8,8-heptamethylnonane”
ith a “ CH–” group in the sixth position and two “ C ” groups

n the fourth position and the eighth position, respectively.
o the proposed group contribution method has limitations in

he flash point calculation of alkanes, while the method pro-
osed in this work can be applied to any alkane (only except
thane).

As also can be seen from Table 3, the predicted flash point val-
es for 2,7-dimethyloctane obtained by ANN, MLR and IRSM
ethod were 311.6, 309.3 and 304.3 K, respectively, all of which
ere close to the value of 314 K used in this work. The fact above
emonstrated that the value of 354 K in Ref. [15] was more than
robably erroneous for 2,7-dimethyloctane.

A Monte Carlo experiment has also been employed to test
he results obtained by BP-ANN method for chance effects.

hen the dependent variables were scrambled, the testing mod-
ls provided high RMS errors, which were 143.55, 155.13 and
97.54 for the training, validation and testing sets, respectively.

uch errors were hundred times the errors obtained when the
ependent variables were not scrambled, which indicated that
he results obtained by BP-ANN method here were not due to
hance.
6.86 8.46 4.15 7.90

. Conclusion

In this study, a BP-ANN based QSPR model was developed
or the prediction of flash points of alkanes using group bond
ontribution method. The group bonds were used as molecular
tructure descriptors which required no calculation, and the
P-ANN model was employed for fitting the possible nonlinear

elationship existed between the structure and property. The
esults showed that the predicted values of flash points agreed
ith the experimental values satisfactorily which can sometimes

pproach the accuracy of experimental flash point determi-
ation. Thus BP-ANN based QSPR model using group bond
ontribution method can be successfully used to predict the flash
oints of alkanes and can also enable initial estimation of flash
oints for new alkane compounds or for other alkanes for which
xperimental values are unknown. Furthermore, this work is
f assistance to the further study on other flammability char-
cteristics, such as auto ignition temperature and flammability
imits.
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